21703 120 MINUTES | 1. | | escences are escence in Solar | _ | • | by | branching | g. Identify | the | characteristic | |----|---------------------------|--|--|---|------------------------------------|---|--|-----------------------------|----------------| | | A)
C) | Amentum
Bostryx | | | B)
D) | Drepanii
Rhipidiu | | | | | 2. | | hydrates are loo
Stain. The maj
Basic fuchsir
Methylene-bl | jor ingre
1 | dient in | | | s:
ed | dic acio | d Schiff's | | 3. | The find A) B) C) D) | patterns like i
The phenotyp
pattern of inhe | ation on
n the po
se govern
eritance
ed larger | the chr
lytene c
ned by t
follower
egions | comoso
chromo
che gen
ed. | ome could
osomes
he could be
the present | be easily view visually observed availab | ewed b
servabl
le DNA | y the banding | | 4. | The tw world: A) B) C) D) | Latitude & ter
Altitude & ter
Temperature &
Humidity & te | mperatu
mperatu
& precip | re
re
oitation | rs infl | uencing the | e biomes dis | stributi | on around the | | 5. | size is | ze of an isolates 40Kb. How alar sequence? | _ | | n num | bers of cl | ones are ne | | _ | | 6. | metabo
proteir | tissue culture
olic processes
ns, often with p
Hairy root cul
Somatic hybr | or to polant genulture | oroduce
etic eng | valua
gineeri | able second
ng
Somatic | lary metabo | olites or | | | 7. | 1. High | by the correctly hyielding chicotetraploid poolyploidy | | - | rieties | | 08, Pusa-41
nobrassica
le | 3 | | | | A) | 1 & 2 only | B) | 2 & 3 | only | C) 1 | & 3 only | D) | 1, 2 & 3 | | 8. | Which among the following statements are connected with Plant Breeders' Rights? Rights granted to the breeder of a new variety of plant that give the breeder exclusive control over the propagating material (including seed, cuttings, divisions, tissue culture) and harvested material (cut flowers, fruit, foliage) of a new variety for a number of years PBR under the Agreement on Trade-Related Aspects of Intellectual Property Rights, a component of the World Trade Organization UPOV (the Convention of the International Union for the Protection of New Varieties of Plants) international treaty that guarantees to plant breeders in member nations national treatment and a right of priority. | | | | | | | | | | | |-----|--|--|--|--|--|--|--|--|--|--|--| | | A) 1, 2 & 3 B) 1 & 2 only C) 2 & 3 only D) 1 & 3 only | | | | | | | | | | | | 9. | Observe the following bioinformatics tools and select the correct statement/s that properly explain the tool 1. Clustal Omega: Globally used in molecular graphics program for visualizing 3-D structures of proteins, nucleic acids and small molecules. | | | | | | | | | | | | | 2. RasMol: Fast and scalable program used for multiple sequence alignment. It uses seeded guide trees and a new HMM engine that focuses on two profiles to generate these alignments. The program requires three or more sequences in order to calculate the multiple sequence alignment, for two sequences use pair wise sequence alignment tools. | | | | | | | | | | | | | 3. BLAST: An algorithm for comparing biological sequence information, such as the amino-acid sequences of protein or nucleotide sequences | | | | | | | | | | | | | A) 1 only B) 1 & 2 only C) 1 & 3 only D) 3 only | | | | | | | | | | | | 10. | The causative organism of False Smut of Paddy. A) Ustilaginoidea virens B) Cephaleuros parasiticus C) Hemileia vastatrix D) Uromyces coronatus | | | | | | | | | | | | 11. | Secondary databases contain information derived from primary data such as sequences, active site residue of proteins and so on. Which of the following is an example for secondary database? A) OMIM B) EMBL C) SWISSPROT D) All the above | | | | | | | | | | | | 12. | During C2 photo respiratory pathway, which of the following metabolite is transported from chloroplast to peroxisome? A) Glycerate B) Glyoxylate C) Glycine D) Glycolate | | | | | | | | | | | | 13. | Which one of the following properties of aquaporins given below is / are correct? 1. Aquaporins are water channels in membrane. 2. Some aquaporins also transport uncharged molecules like NH3. 3. The activity of aquaporins is regulated by phosphorylation. 4. The activity of aquaporin is regulated by calcium concentration. | | | | | | | | | | | | | A) 1, 2, 3 & 4 B) 2, 3 & 4 only C) 1, 2 & 4 only D) 1, 2 & 3 only | | | | | | | | | | | | 14. | Nitrogen fixation is a process of converting molecular nitrogen into ammonia. Nitrogenase is the key enzymes in the process. The production and activity of nitrogenase is highly regulated. Which among the following features is/are correct with the enzyme? | | | | | | | | | |-----|--|--|--|--|-------------------------------|-------------------------|--|---------------------|---------------| | | nita
2. Nit
3. Nit
4. En | rogen gas
trogenase enco
trogenase is hig | ding ger
ghly lab
lability (| ne is unite to ox | der a co
xygen.
ofactor | onstituti
of nitro | about 150 calor
ve promoter.
genase enzyme | • | | | | A) | 1 & 2 only | B) | 1 & 3 | only | C) | 2 & 3 only | D) | 2 & 4 only | | 15. | Polyclonal antibodies (pAbs) are mixture of heterogeneous which are usually produced by different B cell clones in the body. They can recognize and bind to many different epitopes of a single antigen Antibodies are produced <i>ex vivo</i> using tissue-culture techniques Inexpensive and relatively quick to produce (+/- 3 months) and Antibody affinity results in quicker binding to the target antigen | | | | | | | | | | | A) | 1 & 3 only | B) | 1 only | 7 | C) | 1 & 2 only | D) | 1, 2 & 3 | | 16. | 1. RN
2. ds I
3. mi I
4. RN | A with inverte | d repeat
As
ncing co | s hairpi
omplex | | | n sequentially t
onstructs | o expla | in the event | | | A) | 1-3-2-4-5 | B) | 1-2-3- | -4-5 | C) | 1-4-2-3-5 | D) | 1-3-4-2-5 | | 17. | 1. His | n among the fo
tone chaperone
P-dependent cl | es | 2. His | tone m | odifying | odeling factors
g enzymes
es | ? | | | | A) | 1 & 3 only | B) 2 | only | | C) | 2 & 3 only | D) | All the above | | 18. | Transl
distrib
A)
C) | • | tus | | B)
D) | where
Ribos
Nucle | | ied and | packaged for | | 19. | | onal start codo
No introns in
In prokaryote
Two separate
in Prokaryote | n per m
Prokary
es, tRNA
ed seque | RNA?
yotic ce
A molec
ences lik | lls.
ules are | e made 1 | by RNA polymand the -35 bo | nerase II
x prom | I | | 20. | | n of the follow
I in replication
RNase A - rN
RNase H - di
Polymerase I
Exonuclease | ?
ITP faci
ssolves
- hydro | litator
RNA in
lyses R1 | eukary
NA in t | rotes | | A from | RNA: DNA | |-----|-----------------------------------
--|---|--|---------------------------------|---|--|------------|------------------------------| | 21. | ones
1. DN
2. Chl
3. Rec | A polymerase oroplast genon combinational ociated large g | involved
ne lack l
repair ev
gaps in a | d in Bas
DNA reposent is constant | e excis
pair me
often du | ion repa
chanism
te to ma | iir mechanism
n
any thymidine | is DNA | a polymerase β formation and | | | A) | 1, 3, 4 only | B) | 1, 2, 3 | only | C) | 1, 2, 3, 4 | D) | 2, 3, 4 only | | 22. | delete | experiment, yed. You expose scope. What we Many regions Most parts of Fluorescence Nothing is vi | the DN ill you so in the Chrowill be | NA to the see? DNA the omosome corresponding | ne probate emit ne emits ond to | e and to
fluoreses
fluoreses
the general | ry to visualiz
cence
scence
e of your inter | e it und | | | 23. | | mic acid in pro
n B. Which too
Pulse field el
Gel filtration | ol can re
ectropho | solve th | ese two | types | of proteins?
ctric focusing | | esize the new | | 24. | nonfu | n of the follo
nctional copy of
optotic pathwa
ility to arrest th | of the pr | otein- th | ne guaro | | the genome p | | containing a | | | A) | 1 only | B) | 1 & 2 | only | C) | 1, 2 & 3 | D) | 2 & 3 only | | 25. | 1. Mic
2. Mic
3. Inte | the correctly recretive co | ng, hollo
double s
nents - c | w cyline
stranded | helical | polymo | ers, made up o | of actin p | oroteins | | | A) | 1 only | B) | 2 only | | C) | 3 only | D) | 1, 2 & 3 | | | | | | | | | | | | | 26. | | ze the statements DNA replica | | | | | | | | |-----|--|--|--|--|--|---|-------------------------------------|-----------------------------------|--| | | | clin-dependent
osphate group a | | | | | | | | | | pro | turation-promo
teins in the nuc
gets that promo | lear enve | elope, resultin | g in its b | oreakdown, and | d also ac | ctivate | | | | the | turation-promo
anaphase-prom
ses M cyclins t | noting co | mplex/cyclos | ome (Al | PC/C), a protein | _ | _ | | | | A) | 1 & 2 only | B) | 1 & 3 only | C) | 2 & 3 only | D) | 1, 2 & 3 | | | 27. | 1. It do reco | rze the statement
loes not require
eiving the DNA
appens only the
s important as it
to the transfer | e physica
A, and it i
cough lyt
t explain | al contact bety
s DNAase res
ic cycle.
s the mode by | ween the istant. which | e cell donating | the DN | IA and the cell | | | | A) | 1, 2, & 3 | B) | 1 only | C) | 1 & 2 only | D) | 1 & 3 only | | | 28. | stipula | fy the family thate, unilocular at with 2-5 sty Brassicaceae Amaranthace | ovary wi | ith 2 to many | campyl Portul | | | | | | 29. | Flower anther endos A) | ers are unisext
rs explosive,
permic. The far
Arecaceae | ıal, hypo
gynoeciu | ogynous, and
im 1, ovary
ch shows thes
B) | roecium
unilocu
e charac
Eupho | 4-5, filamentalar, superior, eters is orbiaceae | | | | | 30. | Syster | Fixation - Cle
Fixation - De
Fixation - De | Select
aring – Dehydratio
Phydratio | e noticed in the correct solution of solut | sequence
Infiltrati
–Clearir
Infiltrati | aration of para | embeding -Secting -Secting -Section | ded sections ioning oning tioning | | | 31. | Select the mismatched pairs (thallus nature: species) 1. Coenobium – Pandorina 2. Unicellular, motile – Chlorella 3. Filamentous, unbranched – Oedogonium 4. Heterotrichous – Ulothrix | | | | | | | | | | | A) | 2 only | B) | 4 only | C) | 1 only | D) | 2 & 4 only | | | | | | | | | | | | | | 32. | | nalous seconda
of cambium. Tl | | | | | by the | forma | ition o | f successive | |-----|--------------------------------|--|--|---|-------------------------------|----------------------------|------------------------------|----------------------------|----------------------|---------------| | | A) | Boerhaavia | B) | Bignor | | C) | Tinosp | ora | D) | Mirabilis | | 33. | 1. Na | n allergy, a comsal congestion
ny, watery eyes
1, 2, 3, 4, 5
1, 2, 3 & 5 or | 2. Sin | us press | ure with | n facial sense of 1, 3, 4 | | 3. Ru
r smell
y | nning n | ose | | 34. | Which 1. 3. | h among the fol
Earthstars = A
Artist's Brack | Astraeus | 5 | | re corre
2. | ectly mat
Poroid | | = Polyţ | oorus | | | A) | 1 & 2 only | B) | 1 & 3 | only | C) | 2 & 3 0 | only | D) | 1, 2 & 3 | | 35. | Select
A)
B)
C)
D) | t the mismatch
Shorea robus
Lactuca sativ
Hemidesmus
Mentha arver | ta
a
indicus | | r) from (
-
-
-
- | Dipter
Fabac | rocarpaco
eae
piadacea | | | | | 36. | | of the correct
stechnique:
60% ethanol,
50% ethanol,
60% ethanol,
40% ethanol, | 30% ch
40% ch
20% ch | lloroforr
lloroforr
lloroforr | n and 1
n and 1
n and 2 | 0% gla
0% gla
0% gla | cial aceticial aceticial | c acid
c acid
c acid | | n fixative in | | 37. | | spore mother c
uced and have
Apospory
Adventive en | same nu | ımber of | |
osomes
Diplos | and gen | etic m | | | | 38. | | ns are eaten be periods; other Bryoria Cladina | | | | en a de
Umbil | licacy. I | | | | | 39. | 1. Ho 2. Ga 3. An atta 4. Arc | rve the statement
mosporous pter
metophyte is ho
therozoid is spin
ached to the ant
chegonium was
assists of ventral | ridophyt
omothal
rally co
erior en
embede
canal c | e
lic
iled with
d
ded with
ell and a | n the love
nout nec | wer par
k cells, | t is expa | nded w | vith tuft
ls, and | the venter | | | A) | 1, 3 & 4 only | B) | 1,2& | 3 only | C) | 2 & 3 0 | only | D) | 1, 2, 3 & 4 | | 40. | Who is A) | s known as the
Schultes | father of B) | of Ethno
Coline | • | ?
C) | Jones | D) | Harshberger | |-----|---------------------------------------|---|---------------------------------------|------------------------------------|-------------------------------|--|---|----------|--------------| | 41. | Spot o
A)
C) | ut the binomial
Lathyruss sati
Pisum sativun | vus | rpea: | B)
D) | | unguiculata
purpureus | | | | 42. | Arbore
A)
C) | Devonian of I
Jurassic of Mo | Paleaozo | | endrales
B)
D) | Carbor | rolved during:
niferous of Pale
c of Mesozoic | eaozoic | | | 43. | The et ailmen | | cies <i>Fio</i> | cus beng
Jaundi | | cis is uso | ed by the nation | | all of these | | 44. | Observ
1. Lux
2. Woo
3. Dicl | we the statemen
uriance and wo
od is pycnoxyli
hotomous vena
rmatozoids are | ts with
orldwide
c
tion is u | Ginkgoa
e distribi
isually p | ales and
ution du | d select the th | the correct one rmian period o | s: | | | | A) | 1, 2 & 3 only | B) | 1, 3 & | 4 only | C) | 2, 3 & 4 only | D) | 1, 2, 3 & 4 | | 45. | vascul
second | Ty the species was a cylinder with lary growth, so lirect and no gist Lyginopteris Williamsonia | th thick
calarifor
rdles. | cortex | and a | number | of gum canal
thickenings rat | ls, smal | l amount of | | 46. | confor | nen designated
mity with Art
ation, or if it is
as:
Lectotype | . 9.9 a | nd 9.10 | if no | holoty | pe was indica | ated at | the time of | | 47. | Sort or A) B) C) D) | at the pollutant
Carbon compo
Nitrogen com
Nitrogen com
Nitrogen com | ounds, s
pounds,
pounds, | sulphur o
, sulphur
, carbon | compou
compo | ınds, Hy
ounds, H
unds, H | dro carbons
Hydro carbons | er | | | 48. | ones 1. A ni 2. No i 3. Two | der the following the is specific two species can only | function occupy the | nal role
y the sar
ne same | of an o
ne nich
niche a | rganism
e at the
t the sar | same time
ne time in diff | erent ha | bitats | | | A) | 1 only | B) | 2 only | | C) | 1 & 2 only | D) | 1, 2 & 3 | | 49. | Glyco
A)
B)
C)
D) | B) Helical and β-sheet structure, respectively C) Both shows β-sheet structures | | | | | | | | | |-----|--|--|---------------------------------------|---------|----------------------|------------------|--|--------------------|-------------|----| | 50. | 1. Inc
2. Th
3. Inc | creased productered shift of nutrice | tivity.
ents from t
ty of organ | the res | servoirs
with ar | s.
n increa | and select the asse in the niche abs. | | | | | | A) | 1 & 3 only | B) 1 | 1 & 4 | only | C) | 1, 2 & 3 only | D) | 1, 3 & 4 on | ly | | 51. | The poster | _ | nich slows | down | our re | flexes a | and make us cor | nfused | and | | | | A)
C) | Carbon dioxi
Nitrogen diox | | | B)
D) | Carbo
Ozon | on monoxide
e | | | | | 52. | Large
A)
C) | ecosystem hav
Biogeograph
Biogeograph | ic region | • • | es of vo
B)
D) | Biom | on and wildlife in the contract of contrac | s know | 1 as: | | | 53. | 1. Tro | fy the forest ty
pical Moist De
pical Wet Eve | eciduous | ala. | | - | Ory Deciduous
Sub Tropical | | | | | | A)
C) | 1, 3 and 4 or 1, 2 and 4 or | - | | B)
D) | 1, 2 a
1, 2, | and 3 only
3, 4 | | | | | 54. | to che | emical energy
ounds is an exa
First -general | via reduction via reduction biofue | cing p | rotons
B) | to hydr
Secor | r energy i.e., the cogen, or carbonal c | n dioxi
iofuels | | | | 55. | | | | | | | gin of dynamic
the given stater | | 7. | | | | Identify the major assumptions of the theory from the given statements: All successions of a region lead through time to the same adult organism (the climax) regardless of earlier site differences. Climatic factors determine the dominant species that can be present in a region, and completion results in selection of one or more species as the final dominants. Although climax is permanent because of its harmony with a stable habitat, the equilibrium is dynamic and not static. | | | | | | | | | | | | A) | 1 only | B) 1 | 1 & 2 | only | C) | 1 & 3 only | D) | 1, 2 & 3 | | | | | | | | | | | | | | | 56. | Which among the followin 1. Mutualism 2. Host-p 4. Competition within or b | arasite 3. Pre- | f co-evolution?
dator-prey relationships between
species | | |-----|--|--|---|--| | | A) 1, 2 & 3 only B) | 1, 2 & 4 only C | C) 1 & 2 only D) 1, 2, 3 & 4 | | | 57. | of life? 1. Oparin-Haldane hypothe molecules, with building to make complex polym 2. Miller-Urey experiment for life could be formed | esis suggests that lift
g blocks like amino
ers
provided the first
from inorganic con | retriates the hypotheses about the origin The arose gradually from inorganic acids forming first and then combining evidence that organic molecules needed inponents at the first life was self-replicating RNA | | | | A) 2 & 3 only
C) 1 & 3 only | B) 1 & 2 on
D) 1, 2 & 3 | ly | | | 58. | potential from the given ta | | House Gases (GHG) vs Global warming | | | | GHG | | GWP (100-year) | | | | 1. Carbon dioxide | | 1 | | | | 2. Methane | | 310 | | | | 3. Nitrous oxide | | 21 | | | | A) 1 only B) | 2 only | (c) 1 & 2 only D) 3 only | | | 59. | Identify the molecule very membrane? A) Glycophorin | | ghest diffusion coefficient in plasma O-F1 ATPase | | | | C) Insulin receptor | , | ABC transporters | | | 60. | and chose the correct ones. 1. A form of liquid chroma proteins 2. Separation is based on it 3. The buffer flow rate is a kept constant, while the in different proportions | atography that is off
conic charge different
controlled by a posice composition of the
from two or more of
a resin composed of | tive-displacement pump and is normally buffer can be varied by drawing fluids external reservoirs. f beads, usually of cross-linked agarose, | | | | A) 1, 3 & 4 only B) | 1, 2 & 4 only C | (c) 1, 2, 3 only D) 1, 2, 3, & 4 | | | Analyze the statements in connection with ethylene vs abscission and select the correct ones. Ethylene accelerates the rate of abscission by inducing the synthesis of wall hydrolases in the abscission zone. IAA moving acropetally from the leaf blade is thought to retard abscission by maintaining the abscission zone in an ethylene-insensitive state. It also inhibits the expression of genes encoding abscission-specific cellulases and polygalact uranases. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 Analyze the features with Marchantia and select the correct statements from the given options: Sex organs are born on the stalked antheridiophore and archegoniophore. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only Flow cytometry is employed in research connected with: Cell counting & sorting Determining cell characteristics and function Determining cell characteristics and function Detecting microorganisms All the above 65. Separation of isomers is carried effectively using: Counter-current chromatography Th | 61. | In a competitive inhibition of enzyme catalyzed reaction A) V _{max} is increased and K _m is decreased B) V _{max} is increased and K _m is increased C) V _{max} is normal and K _m is decreased D) V _{max} is normal and K _m is increased | |--|-----|--| | wall hydrolases in the abscission zone. 2. IAA moving acropetally from the leaf blade is thought to retard abscission by maintaining the abscission zone in an ethylene-insensitive state. 3. It also inhibits the expression of genes encoding abscission-specific cellulases and polygalact uranases. 4. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 63. Analyze the features with Marchantia and select the correct statements from the given options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography | 62. | · · · · · · · · · · · · · · · · · · · | | maintaining the abscission zone in an ethylene-insensitive state. 3. It also inhibits the expression of genes encoding abscission-specific cellulases and polygalact uranases. 4. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 63. Analyze the features with Marchantia and select the correct statements from the given options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography C) Paper chromatography C) Paper chromatography | | • | | polygalact uranases. 4. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 63. Analyze the features with Marchantia and select the correct statements from the given options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open
in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography C) Paper chromatography | | | | syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 63. Analyze the features with Marchantia and select the correct statements from the given options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography | | | | Analyze the features with Marchantia and select the correct statements from the given options: Sex organs are born on the stalked antheridiophore and archegoniophore. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. The smooth walled rhizoids and scales are extended from the lower epidermis. 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only Flow cytometry is employed in research connected with: Cell counting & sorting Determining cell characteristics and function Detecting microorganisms All the above Separation of isomers is carried effectively using: Counter-current chromatography Paper chromatography Paper chromatography | | 4. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission | | options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography | | A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 | | The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. The smooth walled rhizoids and scales are extended from the lower epidermis. 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only Flow cytometry is employed in research connected with: Cell counting & sorting Determining cell characteristics and function Detecting microorganisms All the above Separation of isomers is carried effectively using: Counter-current chromatography Paper chromatography | 63. | · | | the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography | | 1. Sex organs are born on the stalked antheridiophore and archegoniophore. | | chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography | | | | A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography | | chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil | | 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography | | 4. The smooth walled rhizoids and scales are extended from the lower epidermis. | | A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography | | A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only | | A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography | 64. | A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms | | | 65. | A) Counter-current chromatographyB) Chiral chromatographyC) Paper chromatography | | 66. | Passive transport is the simplest method of transport. Consider the statements in connection with passive transport and select the correct ONES | | | | | | | | | | |-----|---|---|---------------------------------|---|----------------|-------------------------------|----------------------------|-----------------|-------------|--| | | Based on the thermodynamics of the system, particles will move from an area of high concentration to an area of low concentration in order to increase the entropy of the cell. Particle movement will occur spontaneously as the free energy (Gibbs free energy; ΔG) of the system is negative If ΔG<0, then particle movement is considered to be spontaneous; whereas, ΔG>0 particle movement requires the input of energy to move in the desired direction. The properties of the membrane must also be considered when determining the rate of flow of the substrate. Darcy's Law can be used to determine flow rate. A) 1 & 2 only B) 1 & 3 only C) 2
& 4 only D) 1, 2 & 3 | | | | | | | | | | | | A) | 1 & 2 only | B) | 1 & 3 only | y | C) | 2 & 4 only | D) | 1, 2 & 3 | | | 67. | is
A) | referred to as Claviceps | Puff bal
B) | l fungus:
Ustilago | | C) | Morchella | D) | Lycoperdon | | | 68. | Lamin
A)
C) | arin is present
Cryptophyta
Rhodophyta | in: | B)
D) | | Bacilla
Phaeo _j | ariophyta
phyta | | | | | 69. | List I a. Fur b. Bac c. Dia d. Rec | | | | | | | | | | | | A)
C) | a-4, b-3, c-2,
a-3, b-4, c-1, | | B)
D) | | | 3, c-4, d-1
3, c-1, d-2 | | | | | 70. | Choos 1. 2. 3. 4. | In Rivularia f
Chlorococcal
Chlorella repi
Carpospore is | ilament
es are fi
roduces | is complete
lamentous :
by non mo | form
tile s | pores | elatinous shea | th | | | | | A)
C) | 1 only
3 and 4 only | | B)
D) | | 1 and 2 | - | | | | | 71. | An ext | treme xerophyt
Wielandiella | | nosperm wi
Pentaxylo | | single p | oair of opposit
Ginkgo | e leaves:
D) | Welwitschia | | | 72. | Minute
A) | e separable rou
Cilia | nded ou
B) | itgrowths o
Soralia | of lich | nen thal | llus:
Soredia | D) | Ascospore | | | 73. | A host
A)
C) | · · | | | | | | | | | | 74. | Viral | diseases in pla | ants can | be con | itrolled b | • | | | | |-----|--------|------------------------------------|-----------|----------|------------|---------|-------------------|---------|--------------| | | A) | Isolation | | | B) | _ | | | | | | C) | Field sanitar | tion | | D) | All o | f these | | | | 75. | A me | ember of Sphae | erocarpa | | | | | | | | | A) | Riella | B) | Targ | gionia | C) | Cyathodium | D) | Reboulia | | 76. | Choo | se the Correct | stateme | ents | | | | | | | | 1. M | inimal media i | s withou | ıt nutri | ents | | | | | | | | | | | | ounds c | other than a carb | on sou | rce | | | | inimal media h | | | | | | | | | | 4. M | inimal media h | ias no in | organı | c ions | | | | | | | | 1 & 4 only | | 1 & | 3 only | C) | 2 & 3 only | D) | 2 & 4 only | | 77. | | the correct sec | | | | | | | | | | | try of phage D | | | | | | | | | | | ontrol of synthe | | - | 1 4 | 111 | | | | | | | Isorption of phasembly of pha | | | | | stain | | | | | | netration of ta | | | | - | otem | | | | | | sis of bacteria | | ii oacu | oriar ceri | wan | | | | | | | | | | | | | | | | | A) | 5, 6, 1, 3, 2, | | | B) | | 1, 2, 4, 6 | | | | | C) | 6, 3, 2, 1, 5, | 4 | | D) | 1, 3, | 4, 2, 6, 5 | | | | 78. | An e | xample of anal | bolic pat | thway: | | | | | | | | A) | Splitting of | | | | | ose | | | | | B) | Synthesis of | - | | amino a | icids | | | | | | C) | Breakdown | - | | | | | | | | | D) | Break down | of DNA | A | | | | | | | 79. | Matc | h List I with L | ist II | | | | | | | | | List l | | | | List | | | | | | | | uxury genes | | | • | | presence of an | ınhıbıt | ing stimulus | | | | onstitutive gen
epressible gene | | | Lacks int | | Ferent cells and | ticonec | | | | | ocessed genes | - | | - | | es of cells | ussucs | | | | | C | | | | 71 | | | | | | A) | a-3, b-4, c-2 | * | | B) | | 5-3, c-4, d-1 | | | | | C) | a-4, b-3, c-2 | 2, d-1 | | D) | a-3, t | o-4, c-1, d-2 | | | | 80. | Mone | osaccharides a | re classi | fied ba | sed on n | umber o | of carbon atoms | . Galac | tose is an | | | | ple for: | | | | | | | | | | A) | Triose | B) | Tetr | rose | C) | Pentose | D) | Hexose | | 81. | Ion e | xchange resin | used in | ion exc | change c | hromato | ography | | | | | A) | CM sephade | | | B) | | acrylamide | | | | | C) | Silica | | | D) | Starc | h | | | | 82. | Starc | ch is a: | | | | | | | | | | |-----|--|---|--------------|----------------------------------|---------------------|---------------|-----|-----------|--|--|--| | | A) | Heteropolysaccharid | e B | B) Mixture of amylose and amylop | | | | ylopectin | | | | | | C) | Polymer of amylose | D | | | saccharide | | . 1 | | | | | 83. | | Factors affecting migration of macromolecules in electrophoresis: | | | | | | | | | | | | | A) Size and shape of molecule, voltage, current, buffer | | | | | | | | | | | | B) | | | | | | | | | | | | | C) | Size and shape of mo | | tage, cı | arrei | nt | | | | | | | | D) Size and shape of molecule | | | | | | | | | | | | 84. | In DNA, glycosidic bond links: | | | | | | | | | | | | | A) | | | | | | | | | | | | | B) | Nitorgenous base to | | | | | | | | | | | | C) | Nitrogenous base to | | | | | gar | | | | | | | D) | Phosphate molecule | | | | | | | | | | | 85. | A family in the series Bicarpellatae as per Bentham and Hookers Classification | | | | | | | | | | | | | | A) Apiaceae | | | | oretaceae | | | | | | | | C) | Asteraceae | D |) C | leac | ceae | | | | | | | 86. | A duplicate of Holotype: | | | | | | | | | | | | | A) | Neotype B) | Paratype | C | () | Lectotype | D) | Isotype | | | | | 87. | A method by which cell uses membranes to couple the energy released by the | | | | | | | | | | | | | oxid | oxidation of cofactors to yield ATP: | | | | | | | | | | | | A) | • | \mathbf{B} | | Redox potential | | | | | | | | | C) | Chemiosmotic coupl | ing D |) P | hoto | phosphorylati | on | | | | | | 88. | is most commonly used for identification of individuals by DNA fingerprinting: | | | | | | | | | | | | | A) | Satellite DNA | B |) V | VNTR | | | | | | | | | C) | Heterogenous RNA | D |) N | Microsatellite DNA | | | | | | | | 89. | A family with syngenesious anther: | | | | | | | | | | | | | A) | | | | ucu | rbitaceae | | | | | | | | A) Amaranthaceae B) Cucurbitaceae C) Acanthaceae D) Asteraceae | | | | | | | | | | | | 90. | The | correct sequence of poly | ypeptide for | rmation | ı | | | | | | | | | 1. Amino acetylation of tRNA | | | | | | | | | | | | | 2. Formation of initiation complex | | | | | | | | | | | | | 3. A | 3. Activation of amino acids | | | | | | | | | | | | 4. Bi | 4. Binding of AA tRNA at site A of larger subunit of ribosomes | | | | | | | | | | | | 5. Te | 5. Termination of polypeptide chain | | | | | | | | | | | | 6. Tr | 6. Translocation from A site to P site | | | | | | | | | | | | 7. Fo | ormation of peptide bone | d | | | | | | | | | | | A) | 4, 1, 2, 7, 6, 3, 5 | В |) 3. | 3, 1, 2, 4, 7, 6, 5 | | | | | | | | | C) | 2, 3, 1, 4, 7, 6, 5 | D | | | 4, 6, 7, 3, 5 | | | | | | | 91. | Choose the correct statements: 1. Typical Inflorescence in Asteraceae is Head 2. Gamopetalous corolla is found in Caryophyllaceae 3. Androecium is didynamus in Lamiaceae 4. Syncarpous gynoecium is present in Anonaceae | | | | | | | | | | |-----|---|--|----------------------------------|-------------------------------------|----------|----------------------|--------------------|------------|-----------------|--| | | A) | 2 & 3 only | B) | 1 & 3 | only | C) | 1, 2 & 3 or | nly D) | 1, 2 & 4 only | | | 92. | Choose the correct statements: 1. TEM uses low voltage electron beam to create a clear image 2. TEM uses high voltage electron beam to create a clear image 3. Electron gun is commonly fitted with tungsten filament cathode as electron source 4. Electron beam is emitted by elelctromagnetic lenses | | | | | | | | | | | | A) | 2, 3 & 4 only | B) | 2 & 3 | only | C) | 1, 3 & 4 or | nly D) | 1 & 3 only | | | 93. | The f A) B) C) D) | Protect biological tissue from damage after ice formation Cool the cells faster to avoid crystal formation | | | | | | | | | | 94. | Valu
A) | Value of one ocular micrometer division: A) Number of divisions on the stage micrometer x 100 | | | | | | | | | | | B) | B) $\frac{\text{Number of divisions on the stage micrometer}}{\text{Number of divisions on the ocular micrometer}} \times 10$ | | | | | | | | | | | C) | C) $\frac{\text{Number of divisions on the ocular micrometer}}{\text{Number of divisions on the stage micrometer}} \times 100$ | | | | | | | | | | | D) | D) $\frac{\text{Number of divisions on the ocular micrometer}}{\text{Number of divisions on the stage micrometer}} \times 10$ | | | | | | | | | | 95. | Hypa
A) | anthodium is pre
Euphorbia | | :
Hyptis | S | C) | Ficus | D) | Colocasia | | | 96. | Nyctanthes arbo- tristis belongs to the family: | | | | | | | | | | | | A)
C) | Apocynaceae
Cruciferae | 2 | | B)
D) | Olead | anginaceae
ceae | | | | | 97. | Chro
A)
C) | · · · · · · · · · · · · · · · · · · · | | | | | | nosome: | | | | 98. | 1. M
2. M
3. M | ose the correct st
utations are help
utants enable on
utations cannot l
vitro biochemic | oful to e
e to lea
oe indu | elucidate
urn about
ced for l | t metabo | olic reg
nical bl | gulation
ocks | unctions (| using mutations | | | | A) | 1 & 2 only | B) | 1, 2 & | 3 only | C) | 1, 3 & 4 or | nly D) | 1, 2 & 4 only | | | 99. | Choose the correct statement A) Nucleoplasm is Feulgen positive | | | | | | | | | | |------|--|---|-----------|---------|----------|----------------|------------------|------------|-------------|--| | | B) Nucleoplasm in bacterial cell is located in the side of cell | | | | | | | | | | | | C) | Slimy capsule | | | | | | | | | | | D) | • • | | | | _ | nuclear memb | rane | | | | 100. | Man made colourless, odourless, easily
liquefiable chemical with great potential for global warming: | | | | | | | | | | | | A) | Methane | | | B) | Nitrou | ıs oxide | | | | | | C) | Chlorofluoro | carbons | | D) | CO_2 | | | | | | 101. | Choose the correct statements 1. Golgi complex is involved in storage of synthetic proteins 2. B oxidation of fatty acids occur in mitochondria 3. Lysosomes act as tore house of hydrolysing enzymes 4. Vacuoles act as osmoregulatory structures in the cell | | | | | | | | | | | | A) | 2 & 3 only | B) | 2, 3 & | 4 only | C) | 1, 3 & 4 only | D) | 1, 2, 3 & 4 | | | 102. | General
A)
B)
C)
D) | al morphology
Centromere
Karyotype
Super numera
Euchromatin | ıry chron | | | es at so | matic metapha | se of an | individual | | | 103. | Continuous process by which living organisms have come to their present forms and functions: | | | | | | | | | | | | A) | Organic evolu | ıtion | | B) | Inorga | nic evolution | | | | | | C) | Progressive e | | | D) | _ | gressive evolut | ion | | | | 104. | | oding sequence
otides in the mi | | m is or | ganized | • | comoter region | with a s | et of seven | | | | A) | Antisense reg | ion | | B) | ORI | | | | | | | C) | Initiator site | | | D) | Pribno | ow box | | | | | 105. | A chemical mutagen used for breeding: | | | | | | | | | | | | A)
C) | EMS Methylene blu | 110 | | B)
D) | UV
Cobal | t | | | | | | , | • | | | | | | | | | | 106. | Integral membrane proteins that form water selective channels across the membrane: | | | | | | | | | | | | , | | | | | B) Ion channel | | | | | | | C) Plasmodesmata D) Hydraulic pore | | | | | | | | | | | 107. | | min which is g | | omotin | g, anti | infectiv | e, soluble in fa | its and if | present in | | | | A) | Vitamin A | B) | Vitam | in B | C) | Vitamin C | D) | Vitamin K | | | | | | | | | | | | | | | 108. | II ter | minai bud of a plant is remov | | | ne plant? | | | | | | | | |------|---|---|------------|----------------------|-------------|--------------|--|--|--|--|--|--| | | A) | Plant will stops growing | B) | Plant will die | | | | | | | | | | | C) | Shoot will die | D) | lateral buds will g | grow and c | ause profuse | | | | | | | | | | | , | branching | , | 1 | 109. | Impo | ortance of pentose phosphate | | | | | | | | | | | | | A) | Alternate route for carbohydrate production, produce ribose sugars | | | | | | | | | | | | | B) | Produce ribose sugars, alte | ernate rou | te for carbohydrate | degradation | on, Provides | | | | | | | | | | erythorose 4 phosphate, ar | | | | | | | | | | | | | C) | Enhanced Co ₂ fixation and | | | 1 | | | | | | | | | | D) | Alternate route to carbohy | | * | e of oxyge | en | | | | | | | | | , | • | | | , , | | | | | | | | | 110. | A gra | A grazing food chain: | | | | | | | | | | | | | A) | Autotroph \rightarrow herbivore \rightarrow primary carnivore \rightarrow secondary carnivore | | | | | | | | | | | | | B) | Autotroph \rightarrow herbivore \rightarrow | decomp | osers | | | | | | | | | | | C) | Herbivore → primary car | | | re | | | | | | | | | | D) | Autotroph \rightarrow carnivore – | | | | | | | | | | | | | , | • | • | | | | | | | | | | | 111. | Kaziı | anga wild life sanctuary is m | nainly for | | | | | | | | | | | | A) | Sloth bear B) Elep | phant | C) Wild boar | D) | Rhinoceros | | | | | | | | 112. | Percentage of net production efficiency of an ecosystem: | | | | | | | | | | | | | 112. | | | | | | | | | | | | | | | A) | Gross primary productivity | 100 | | | | | | | | | | | | 11) | Incidet total solar radiation | . 100 | | | | | | | | | | | | B) | Net primary productivity | 100 | | | | | | | | | | | | D) | Gross primary productivity | | | | | | | | | | | | | C) | C) Food energy assimilated x 100 | | | | | | | | | | | | | Ο) | | | | | | | | | | | | | | D) | Gross primary productivity x 100 | | | | | | | | | | | | | D) | Net primary productivity | 100 | | | | | | | | | | | 113. | Basis | of speciation: | | | | | | | | | | | | | A) | Mutation | B) | Genetic variation | | | | | | | | | | | C) | Species diversity | D) | Environmental str | ·ess | | | | | | | | | | C) | species diversity | D) | Environmental su | .033 | | | | | | | | | 114. | A biome with tree less plain, with long winters and little daylight | | | | | | | | | | | | | | A) | Savannah B) Tun | | C) Taiga | D) | Chapparal | | | | | | | | |) | 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | | -) | - / | | | | | | | | | 115. | A free floating plant on the surface of water: | | | | | | | | | | | | | | A) | Ceratophyllum | B) | Typha | | | | | | | | | | | C) | Nymphaea | D) | Wolffia | | | | | | | | | | | ŕ | | ŕ | | | | | | | | | | | 116. | | sewage converted to biologic | cally inac | ive and aestheticall | y inoffens | sive state, | | | | | | | | | _ | e is formed after: | | ~ . | | | | | | | | | | | A) | Primary treatment | B) | Secondary treatm | ent | | | | | | | | | | C) | Tertiary treatment | D) | Chlorination | | | | | | | | | | 117. | A method for production of virus free plant | | | | | s from infected plants | | | | | |------|---|--|----|-------------|----------------|------------------------|-------|---------------|--|--| | | A) Anther culture | | | B) | Pollen culture | | | | | | | | C) | C) Meristem culture | | D) | Oovule culture | | | | | | | 118. | Biode | Biodegradable natural polymer: | | | | | | | | | | | A) | Polyurethane | B) | Polystyrene | C) | Polyethyler | ne D) | Polylactide | | | | 119. | Golde | Golden rice is a genetically modified rice variety for biosynthesis of | | | | | | | | | | | A) | Vitamin A | B) | Vitamin B | C) | Biotin | D) | Beta karotene | | | | 120. | A bibliographic database: | | | | | | | | | | | | A) | MEDLINE | B) | ExPASY | C) | SRS | D) | TrEMBL | | | | | | | | | | | | | | | _____