

21703 120 MINUTES

1.		escences are escence in Solar	_	•	by	branching	g. Identify	the	characteristic
	A) C)	Amentum Bostryx			B) D)	Drepanii Rhipidiu			
2.		hydrates are loo Stain. The maj Basic fuchsir Methylene-bl	jor ingre 1	dient in			s: ed	dic acio	d Schiff's
3.	The find A) B) C) D)	patterns like i The phenotyp pattern of inhe	ation on n the po se govern eritance ed larger	the chr lytene c ned by t follower egions	comoso chromo che gen ed.	ome could osomes he could be the present	be easily view visually observed availab	ewed b servabl le DNA	y the banding
4.	The tw world: A) B) C) D)	Latitude & ter Altitude & ter Temperature & Humidity & te	mperatu mperatu & precip	re re oitation	rs infl	uencing the	e biomes dis	stributi	on around the
5.	size is	ze of an isolates 40Kb. How alar sequence?	_		n num	bers of cl	ones are ne		_
6.	metabo proteir	tissue culture olic processes ns, often with p Hairy root cul Somatic hybr	or to polant genulture	oroduce etic eng	valua gineeri	able second ng Somatic	lary metabo	olites or	
7.	1. High	by the correctly hyielding chicotetraploid poolyploidy		-	rieties		08, Pusa-41 nobrassica le	3	
	A)	1 & 2 only	B)	2 & 3	only	C) 1	& 3 only	D)	1, 2 & 3

8.	 Which among the following statements are connected with Plant Breeders' Rights? Rights granted to the breeder of a new variety of plant that give the breeder exclusive control over the propagating material (including seed, cuttings, divisions, tissue culture) and harvested material (cut flowers, fruit, foliage) of a new variety for a number of years PBR under the Agreement on Trade-Related Aspects of Intellectual Property Rights, a component of the World Trade Organization UPOV (the Convention of the International Union for the Protection of New Varieties of Plants) international treaty that guarantees to plant breeders in member nations national treatment and a right of priority. 										
	A) 1, 2 & 3 B) 1 & 2 only C) 2 & 3 only D) 1 & 3 only										
9.	Observe the following bioinformatics tools and select the correct statement/s that properly explain the tool 1. Clustal Omega: Globally used in molecular graphics program for visualizing 3-D structures of proteins, nucleic acids and small molecules.										
	2. RasMol: Fast and scalable program used for multiple sequence alignment. It uses seeded guide trees and a new HMM engine that focuses on two profiles to generate these alignments. The program requires three or more sequences in order to calculate the multiple sequence alignment, for two sequences use pair wise sequence alignment tools.										
	3. BLAST: An algorithm for comparing biological sequence information, such as the amino-acid sequences of protein or nucleotide sequences										
	A) 1 only B) 1 & 2 only C) 1 & 3 only D) 3 only										
10.	The causative organism of False Smut of Paddy. A) Ustilaginoidea virens B) Cephaleuros parasiticus C) Hemileia vastatrix D) Uromyces coronatus										
11.	Secondary databases contain information derived from primary data such as sequences, active site residue of proteins and so on. Which of the following is an example for secondary database? A) OMIM B) EMBL C) SWISSPROT D) All the above										
12.	During C2 photo respiratory pathway, which of the following metabolite is transported from chloroplast to peroxisome? A) Glycerate B) Glyoxylate C) Glycine D) Glycolate										
13.	Which one of the following properties of aquaporins given below is / are correct? 1. Aquaporins are water channels in membrane. 2. Some aquaporins also transport uncharged molecules like NH3. 3. The activity of aquaporins is regulated by phosphorylation. 4. The activity of aquaporin is regulated by calcium concentration.										
	A) 1, 2, 3 & 4 B) 2, 3 & 4 only C) 1, 2 & 4 only D) 1, 2 & 3 only										

14.	Nitrogen fixation is a process of converting molecular nitrogen into ammonia. Nitrogenase is the key enzymes in the process. The production and activity of nitrogenase is highly regulated. Which among the following features is/are correct with the enzyme?								
	nita 2. Nit 3. Nit 4. En	rogen gas trogenase enco trogenase is hig	ding ger ghly lab lability (ne is unite to ox	der a co xygen. ofactor	onstituti of nitro	about 150 calor ve promoter. genase enzyme	•	
	A)	1 & 2 only	B)	1 & 3	only	C)	2 & 3 only	D)	2 & 4 only
15.	 Polyclonal antibodies (pAbs) are mixture of heterogeneous which are usually produced by different B cell clones in the body. They can recognize and bind to many different epitopes of a single antigen Antibodies are produced <i>ex vivo</i> using tissue-culture techniques Inexpensive and relatively quick to produce (+/- 3 months) and Antibody affinity results in quicker binding to the target antigen 								
	A)	1 & 3 only	B)	1 only	7	C)	1 & 2 only	D)	1, 2 & 3
16.	1. RN 2. ds I 3. mi I 4. RN	A with inverte	d repeat As ncing co	s hairpi omplex			n sequentially t onstructs	o expla	in the event
	A)	1-3-2-4-5	B)	1-2-3-	-4-5	C)	1-4-2-3-5	D)	1-3-4-2-5
17.	1. His	n among the fo tone chaperone P-dependent cl	es	2. His	tone m	odifying	odeling factors g enzymes es	?	
	A)	1 & 3 only	B) 2	only		C)	2 & 3 only	D)	All the above
18.	Transl distrib A) C)	•	tus		B) D)	where Ribos Nucle		ied and	packaged for
19.		onal start codo No introns in In prokaryote Two separate in Prokaryote	n per m Prokary es, tRNA ed seque	RNA? yotic ce A molec ences lik	lls. ules are	e made 1	by RNA polymand the -35 bo	nerase II x prom	I

20.		n of the follow I in replication RNase A - rN RNase H - di Polymerase I Exonuclease	? ITP faci ssolves - hydro	litator RNA in lyses R1	eukary NA in t	rotes		A from	RNA: DNA
21.	ones 1. DN 2. Chl 3. Rec	A polymerase oroplast genon combinational ociated large g	involved ne lack l repair ev gaps in a	d in Bas DNA reposent is constant	e excis pair me often du	ion repa chanism te to ma	iir mechanism n any thymidine	is DNA	a polymerase β formation and
	A)	1, 3, 4 only	B)	1, 2, 3	only	C)	1, 2, 3, 4	D)	2, 3, 4 only
22.	delete	experiment, yed. You expose scope. What we Many regions Most parts of Fluorescence Nothing is vi	the DN ill you so in the Chrowill be	NA to the see? DNA the omosome corresponding	ne probate emit ne emits ond to	e and to fluoreses fluoreses the general	ry to visualiz cence scence e of your inter	e it und	
23.		mic acid in pro n B. Which too Pulse field el Gel filtration	ol can re ectropho	solve th	ese two	types	of proteins? ctric focusing		esize the new
24.	nonfu	n of the follo nctional copy of optotic pathwa ility to arrest th	of the pr	otein- th	ne guaro		the genome p		containing a
	A)	1 only	B)	1 & 2	only	C)	1, 2 & 3	D)	2 & 3 only
25.	1. Mic 2. Mic 3. Inte	the correctly recretive the co	ng, hollo double s nents - c	w cyline stranded	helical	polymo	ers, made up o	of actin p	oroteins
	A)	1 only	B)	2 only		C)	3 only	D)	1, 2 & 3

26.		ze the statements DNA replica							
		clin-dependent osphate group a							
	pro	turation-promo teins in the nuc gets that promo	lear enve	elope, resultin	g in its b	oreakdown, and	d also ac	ctivate	
	the	turation-promo anaphase-prom ses M cyclins t	noting co	mplex/cyclos	ome (Al	PC/C), a protein	_	_	
	A)	1 & 2 only	B)	1 & 3 only	C)	2 & 3 only	D)	1, 2 & 3	
27.	1. It do reco	rze the statement loes not require eiving the DNA appens only the s important as it to the transfer	e physica A, and it i cough lyt t explain	al contact bety s DNAase res ic cycle. s the mode by	ween the istant. which	e cell donating	the DN	IA and the cell	
	A)	1, 2, & 3	B)	1 only	C)	1 & 2 only	D)	1 & 3 only	
28.	stipula	fy the family thate, unilocular at with 2-5 sty Brassicaceae Amaranthace	ovary wi	ith 2 to many	campyl Portul				
29.	Flower anther endos A)	ers are unisext rs explosive, permic. The far Arecaceae	ıal, hypo gynoeciu	ogynous, and im 1, ovary ch shows thes B)	roecium unilocu e charac Eupho	4-5, filamentalar, superior, eters is orbiaceae			
30.	Syster	Fixation - Cle Fixation - De Fixation - De	Select aring – Dehydratio Phydratio	e noticed in the correct solution of the correct solut	sequence Infiltrati –Clearir Infiltrati	aration of para	embeding -Secting -Secting -Section	ded sections ioning oning tioning	
31.	Select the mismatched pairs (thallus nature: species) 1. Coenobium – Pandorina 2. Unicellular, motile – Chlorella 3. Filamentous, unbranched – Oedogonium 4. Heterotrichous – Ulothrix								
	A)	2 only	B)	4 only	C)	1 only	D)	2 & 4 only	

32.		nalous seconda of cambium. Tl					by the	forma	ition o	f successive
	A)	Boerhaavia	B)	Bignor		C)	Tinosp	ora	D)	Mirabilis
33.	1. Na	n allergy, a comsal congestion ny, watery eyes 1, 2, 3, 4, 5 1, 2, 3 & 5 or	2. Sin	us press	ure with	n facial sense of 1, 3, 4		3. Ru r smell y	nning n	ose
34.	Which 1. 3.	h among the fol Earthstars = A Artist's Brack	Astraeus	5		re corre 2.	ectly mat Poroid		= Polyţ	oorus
	A)	1 & 2 only	B)	1 & 3	only	C)	2 & 3 0	only	D)	1, 2 & 3
35.	Select A) B) C) D)	t the mismatch Shorea robus Lactuca sativ Hemidesmus Mentha arver	ta a indicus		r) from (- - - -	Dipter Fabac	rocarpaco eae piadacea			
36.		of the correct stechnique: 60% ethanol, 50% ethanol, 60% ethanol, 40% ethanol,	30% ch 40% ch 20% ch	lloroforr lloroforr lloroforr	n and 1 n and 1 n and 2	0% gla 0% gla 0% gla	cial aceticial aceticial	c acid c acid c acid		n fixative in
37.		spore mother c uced and have Apospory Adventive en	same nu	ımber of		osomes Diplos	and gen	etic m		
38.		ns are eaten be periods; other Bryoria Cladina				en a de Umbil	licacy. I			
39.	1. Ho 2. Ga 3. An atta 4. Arc	rve the statement mosporous pter metophyte is ho therozoid is spin ached to the ant chegonium was assists of ventral	ridophyt omothal rally co erior en embede canal c	e lic iled with d ded with ell and a	n the love nout nec	wer par k cells,	t is expa	nded w	vith tuft ls, and	the venter
	A)	1, 3 & 4 only	B)	1,2&	3 only	C)	2 & 3 0	only	D)	1, 2, 3 & 4

40.	Who is A)	s known as the Schultes	father of B)	of Ethno Coline	•	? C)	Jones	D)	Harshberger
41.	Spot o A) C)	ut the binomial Lathyruss sati Pisum sativun	vus	rpea:	B) D)		unguiculata purpureus		
42.	Arbore A) C)	Devonian of I Jurassic of Mo	Paleaozo		endrales B) D)	Carbor	rolved during: niferous of Pale c of Mesozoic	eaozoic	
43.	The et ailmen		cies <i>Fio</i>	cus beng Jaundi		cis is uso	ed by the nation		all of these
44.	Observ 1. Lux 2. Woo 3. Dicl	we the statemen uriance and wo od is pycnoxyli hotomous vena rmatozoids are	ts with orldwide c tion is u	Ginkgoa e distribi isually p	ales and ution du	d select the select th	the correct one rmian period o	s:	
	A)	1, 2 & 3 only	B)	1, 3 &	4 only	C)	2, 3 & 4 only	D)	1, 2, 3 & 4
45.	vascul second	Ty the species was a cylinder with lary growth, so lirect and no gist Lyginopteris Williamsonia	th thick calarifor rdles.	cortex	and a	number	of gum canal thickenings rat	ls, smal	l amount of
46.	confor	nen designated mity with Art ation, or if it is as: Lectotype	. 9.9 a	nd 9.10	if no	holoty	pe was indica	ated at	the time of
47.	Sort or A) B) C) D)	at the pollutant Carbon compo Nitrogen com Nitrogen com Nitrogen com	ounds, s pounds, pounds,	sulphur o , sulphur , carbon	compou compo	ınds, Hy ounds, H unds, H	dro carbons Hydro carbons	er	
48.	ones 1. A ni 2. No i 3. Two	der the following the is specific two species can only	function occupy the	nal role y the sar ne same	of an o ne nich niche a	rganism e at the t the sar	same time ne time in diff	erent ha	bitats
	A)	1 only	B)	2 only		C)	1 & 2 only	D)	1, 2 & 3

49.	Glyco A) B) C) D)	 B) Helical and β-sheet structure, respectively C) Both shows β-sheet structures 								
50.	1. Inc 2. Th 3. Inc	creased productered shift of nutrice	tivity. ents from t ty of organ	the res	servoirs with ar	s. n increa	and select the asse in the niche abs.			
	A)	1 & 3 only	B) 1	1 & 4	only	C)	1, 2 & 3 only	D)	1, 3 & 4 on	ly
51.	The poster	_	nich slows	down	our re	flexes a	and make us cor	nfused	and	
	A) C)	Carbon dioxi Nitrogen diox			B) D)	Carbo Ozon	on monoxide e			
52.	Large A) C)	ecosystem hav Biogeograph Biogeograph	ic region	• •	es of vo B) D)	Biom	on and wildlife in the contract of the contrac	s know	1 as:	
53.	1. Tro	fy the forest ty pical Moist De pical Wet Eve	eciduous	ala.		-	Ory Deciduous Sub Tropical			
	A) C)	1, 3 and 4 or 1, 2 and 4 or	-		B) D)	1, 2 a 1, 2,	and 3 only 3, 4			
54.	to che	emical energy ounds is an exa First -general	via reduction via reduction biofue	cing p	rotons B)	to hydr Secor	r energy i.e., the cogen, or carbonal or c	n dioxi iofuels		
55.							gin of dynamic the given stater		7.	
	 Identify the major assumptions of the theory from the given statements: All successions of a region lead through time to the same adult organism (the climax) regardless of earlier site differences. Climatic factors determine the dominant species that can be present in a region, and completion results in selection of one or more species as the final dominants. Although climax is permanent because of its harmony with a stable habitat, the equilibrium is dynamic and not static. 									
	A)	1 only	B) 1	1 & 2	only	C)	1 & 3 only	D)	1, 2 & 3	

56.	Which among the followin 1. Mutualism 2. Host-p 4. Competition within or b	arasite 3. Pre-	f co-evolution? dator-prey relationships between species	
	A) 1, 2 & 3 only B)	1, 2 & 4 only C	C) 1 & 2 only D) 1, 2, 3 & 4	
57.	of life? 1. Oparin-Haldane hypothe molecules, with building to make complex polym 2. Miller-Urey experiment for life could be formed	esis suggests that lift g blocks like amino ers provided the first from inorganic con	retriates the hypotheses about the origin The arose gradually from inorganic acids forming first and then combining evidence that organic molecules needed inponents at the first life was self-replicating RNA	
	A) 2 & 3 only C) 1 & 3 only	B) 1 & 2 on D) 1, 2 & 3	ly	
58.	potential from the given ta		House Gases (GHG) vs Global warming	
	GHG		GWP (100-year)	
	1. Carbon dioxide		1	
	2. Methane		310	
	3. Nitrous oxide		21	
	A) 1 only B)	2 only	(c) 1 & 2 only D) 3 only	
59.	Identify the molecule very membrane? A) Glycophorin		ghest diffusion coefficient in plasma O-F1 ATPase	
	C) Insulin receptor	,	ABC transporters	
60.	 and chose the correct ones. 1. A form of liquid chroma proteins 2. Separation is based on it 3. The buffer flow rate is a kept constant, while the in different proportions 	atography that is off conic charge different controlled by a posice composition of the from two or more of a resin composed of	tive-displacement pump and is normally buffer can be varied by drawing fluids external reservoirs. f beads, usually of cross-linked agarose,	
	A) 1, 3 & 4 only B)	1, 2 & 4 only C	(c) 1, 2, 3 only D) 1, 2, 3, & 4	

 Analyze the statements in connection with ethylene vs abscission and select the correct ones. Ethylene accelerates the rate of abscission by inducing the synthesis of wall hydrolases in the abscission zone. IAA moving acropetally from the leaf blade is thought to retard abscission by maintaining the abscission zone in an ethylene-insensitive state. It also inhibits the expression of genes encoding abscission-specific cellulases and polygalact uranases. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 Analyze the features with Marchantia and select the correct statements from the given options: Sex organs are born on the stalked antheridiophore and archegoniophore. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only Flow cytometry is employed in research connected with: Cell counting & sorting Determining cell characteristics and function Determining cell characteristics and function Detecting microorganisms All the above 65. Separation of isomers is carried effectively using: Counter-current chromatography Th	61.	In a competitive inhibition of enzyme catalyzed reaction A) V _{max} is increased and K _m is decreased B) V _{max} is increased and K _m is increased C) V _{max} is normal and K _m is decreased D) V _{max} is normal and K _m is increased
wall hydrolases in the abscission zone. 2. IAA moving acropetally from the leaf blade is thought to retard abscission by maintaining the abscission zone in an ethylene-insensitive state. 3. It also inhibits the expression of genes encoding abscission-specific cellulases and polygalact uranases. 4. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 63. Analyze the features with Marchantia and select the correct statements from the given options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography	62.	· · · · · · · · · · · · · · · · · · ·
maintaining the abscission zone in an ethylene-insensitive state. 3. It also inhibits the expression of genes encoding abscission-specific cellulases and polygalact uranases. 4. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 63. Analyze the features with Marchantia and select the correct statements from the given options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography C) Paper chromatography C) Paper chromatography		•
polygalact uranases. 4. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 63. Analyze the features with Marchantia and select the correct statements from the given options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography C) Paper chromatography		
syndrome commences. Abscisic acid and jasmonates also reported to induce abscission A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4 63. Analyze the features with Marchantia and select the correct statements from the given options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography		
 Analyze the features with Marchantia and select the correct statements from the given options: Sex organs are born on the stalked antheridiophore and archegoniophore. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. The smooth walled rhizoids and scales are extended from the lower epidermis. 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only Flow cytometry is employed in research connected with: Cell counting & sorting Determining cell characteristics and function Detecting microorganisms All the above Separation of isomers is carried effectively using: Counter-current chromatography Paper chromatography Paper chromatography 		4. As leaves age, the auxin concentration drops, and the ethylene-induced abscission syndrome commences. Abscisic acid and jasmonates also reported to induce abscission
options: 1. Sex organs are born on the stalked antheridiophore and archegoniophore. 2. The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography		A) 1, 2 & 3 only B) 1 & 4 only C) 1, 3 & 4 only D) 1, 2, 3 & 4
 The upper epidermis consists of air pores, which open in the air chamber present in the photosynthetic zone. The upper epidermis lack chloroplasts. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. The smooth walled rhizoids and scales are extended from the lower epidermis. 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only Flow cytometry is employed in research connected with: Cell counting & sorting Determining cell characteristics and function Detecting microorganisms All the above Separation of isomers is carried effectively using: Counter-current chromatography Paper chromatography 	63.	·
the photosynthetic zone. The upper epidermis lack chloroplasts. 3. Beneath the air chamber and photosynthetic zone lies the storage zone. It lacks chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography		1. Sex organs are born on the stalked antheridiophore and archegoniophore.
chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil and mucilage. 4. The smooth walled rhizoids and scales are extended from the lower epidermis. A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography		
A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography		chloroplasts and is made up of parenchymatous cells. They store protein, starch, oil
 64. Flow cytometry is employed in research connected with: A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography 		4. The smooth walled rhizoids and scales are extended from the lower epidermis.
A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms D) All the above 65. Separation of isomers is carried effectively using: A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography		A) 1 & 2 only B) 1, 2 & 3 only C) 2, 3 & 4 only D) 1 & 3 only
 A) Counter-current chromatography B) Chiral chromatography C) Paper chromatography 	64.	 A) Cell counting & sorting B) Determining cell characteristics and function C) Detecting microorganisms
	65.	A) Counter-current chromatographyB) Chiral chromatographyC) Paper chromatography

66.	Passive transport is the simplest method of transport. Consider the statements in connection with passive transport and select the correct ONES									
	 Based on the thermodynamics of the system, particles will move from an area of high concentration to an area of low concentration in order to increase the entropy of the cell. Particle movement will occur spontaneously as the free energy (Gibbs free energy; ΔG) of the system is negative If ΔG<0, then particle movement is considered to be spontaneous; whereas, ΔG>0 particle movement requires the input of energy to move in the desired direction. The properties of the membrane must also be considered when determining the rate of flow of the substrate. Darcy's Law can be used to determine flow rate. A) 1 & 2 only B) 1 & 3 only C) 2 & 4 only D) 1, 2 & 3 									
	A)	1 & 2 only	B)	1 & 3 only	y	C)	2 & 4 only	D)	1, 2 & 3	
67.	is A)	referred to as Claviceps	Puff bal B)	l fungus: Ustilago		C)	Morchella	D)	Lycoperdon	
68.	Lamin A) C)	arin is present Cryptophyta Rhodophyta	in:	B) D)		Bacilla Phaeo _j	ariophyta phyta			
69.	List I a. Fur b. Bac c. Dia d. Rec									
	A) C)	a-4, b-3, c-2, a-3, b-4, c-1,		B) D)			3, c-4, d-1 3, c-1, d-2			
70.	Choos 1. 2. 3. 4.	In Rivularia f Chlorococcal Chlorella repi Carpospore is	ilament es are fi roduces	is complete lamentous : by non mo	form tile s	pores	elatinous shea	th		
	A) C)	1 only 3 and 4 only		B) D)		1 and 2	-			
71.	An ext	treme xerophyt Wielandiella		nosperm wi Pentaxylo		single p	oair of opposit Ginkgo	e leaves: D)	Welwitschia	
72.	Minute A)	e separable rou Cilia	nded ou B)	itgrowths o Soralia	of lich	nen thal	llus: Soredia	D)	Ascospore	
73.	A host A) C)	· ·								

74.	Viral	diseases in pla	ants can	be con	itrolled b	•			
	A)	Isolation			B)	_			
	C)	Field sanitar	tion		D)	All o	f these		
75.	A me	ember of Sphae	erocarpa						
	A)	Riella	B)	Targ	gionia	C)	Cyathodium	D)	Reboulia
76.	Choo	se the Correct	stateme	ents					
	1. M	inimal media i	s withou	ıt nutri	ents				
						ounds c	other than a carb	on sou	rce
		inimal media h							
	4. M	inimal media h	ias no in	organı	c ions				
		1 & 4 only		1 &	3 only	C)	2 & 3 only	D)	2 & 4 only
77.		the correct sec							
		try of phage D							
		ontrol of synthe		-	1 4	111			
		Isorption of phasembly of pha					stain		
		netration of ta				-	otem		
		sis of bacteria		ii oacu	oriar ceri	wan			
	A)	5, 6, 1, 3, 2,			B)		1, 2, 4, 6		
	C)	6, 3, 2, 1, 5,	4		D)	1, 3,	4, 2, 6, 5		
78.	An e	xample of anal	bolic pat	thway:					
	A)	Splitting of					ose		
	B)	Synthesis of	-		amino a	icids			
	C)	Breakdown	-						
	D)	Break down	of DNA	A					
79.	Matc	h List I with L	ist II						
	List l				List				
		uxury genes			•		presence of an	ınhıbıt	ing stimulus
		onstitutive gen epressible gene			Lacks int		Ferent cells and	ticonec	
		ocessed genes	-		-		es of cells	ussucs	
		C				71			
	A)	a-3, b-4, c-2	*		B)		5-3, c-4, d-1		
	C)	a-4, b-3, c-2	2, d-1		D)	a-3, t	o-4, c-1, d-2		
80.	Mone	osaccharides a	re classi	fied ba	sed on n	umber o	of carbon atoms	. Galac	tose is an
		ple for:							
	A)	Triose	B)	Tetr	rose	C)	Pentose	D)	Hexose
81.	Ion e	xchange resin	used in	ion exc	change c	hromato	ography		
	A)	CM sephade			B)		acrylamide		
	C)	Silica			D)	Starc	h		

82.	Starc	ch is a:									
	A)	Heteropolysaccharid	e B	B) Mixture of amylose and amylop				ylopectin			
	C)	Polymer of amylose	D			saccharide		. 1			
83.		Factors affecting migration of macromolecules in electrophoresis:									
		A) Size and shape of molecule, voltage, current, buffer									
	B)										
	C)	Size and shape of mo		tage, cı	arrei	nt					
	D) Size and shape of molecule										
84.	In DNA, glycosidic bond links:										
	A)										
	B)	Nitorgenous base to									
	C)	Nitrogenous base to					gar				
	D)	Phosphate molecule									
85.	A family in the series Bicarpellatae as per Bentham and Hookers Classification										
		A) Apiaceae				oretaceae					
	C)	Asteraceae	D) C	leac	ceae					
86.	A duplicate of Holotype:										
	A)	Neotype B)	Paratype	C	()	Lectotype	D)	Isotype			
87.	A method by which cell uses membranes to couple the energy released by the										
	oxid	oxidation of cofactors to yield ATP:									
	A)	•	\mathbf{B}		Redox potential						
	C)	Chemiosmotic coupl	ing D) P	hoto	phosphorylati	on				
88.	is most commonly used for identification of individuals by DNA fingerprinting:										
	A)	Satellite DNA	B) V	VNTR						
	C)	Heterogenous RNA	D) N	Microsatellite DNA						
89.	A family with syngenesious anther:										
	A)				ucu	rbitaceae					
	A) Amaranthaceae B) Cucurbitaceae C) Acanthaceae D) Asteraceae										
90.	The	correct sequence of poly	ypeptide for	rmation	ı						
	1. Amino acetylation of tRNA										
	2. Formation of initiation complex										
	3. A	3. Activation of amino acids									
	4. Bi	4. Binding of AA tRNA at site A of larger subunit of ribosomes									
	5. Te	5. Termination of polypeptide chain									
	6. Tr	6. Translocation from A site to P site									
	7. Fo	ormation of peptide bone	d								
	A)	4, 1, 2, 7, 6, 3, 5	В) 3.	3, 1, 2, 4, 7, 6, 5						
	C)	2, 3, 1, 4, 7, 6, 5	D			4, 6, 7, 3, 5					

91.	Choose the correct statements: 1. Typical Inflorescence in Asteraceae is Head 2. Gamopetalous corolla is found in Caryophyllaceae 3. Androecium is didynamus in Lamiaceae 4. Syncarpous gynoecium is present in Anonaceae									
	A)	2 & 3 only	B)	1 & 3	only	C)	1, 2 & 3 or	nly D)	1, 2 & 4 only	
92.	Choose the correct statements: 1. TEM uses low voltage electron beam to create a clear image 2. TEM uses high voltage electron beam to create a clear image 3. Electron gun is commonly fitted with tungsten filament cathode as electron source 4. Electron beam is emitted by elelctromagnetic lenses									
	A)	2, 3 & 4 only	B)	2 & 3	only	C)	1, 3 & 4 or	nly D)	1 & 3 only	
93.	The f A) B) C) D)	Protect biological tissue from damage after ice formation Cool the cells faster to avoid crystal formation								
94.	Valu A)	Value of one ocular micrometer division: A) Number of divisions on the stage micrometer x 100								
	B)	B) $\frac{\text{Number of divisions on the stage micrometer}}{\text{Number of divisions on the ocular micrometer}} \times 10$								
	C)	C) $\frac{\text{Number of divisions on the ocular micrometer}}{\text{Number of divisions on the stage micrometer}} \times 100$								
	D)	D) $\frac{\text{Number of divisions on the ocular micrometer}}{\text{Number of divisions on the stage micrometer}} \times 10$								
95.	Hypa A)	anthodium is pre Euphorbia		: Hyptis	S	C)	Ficus	D)	Colocasia	
96.	Nyctanthes arbo- tristis belongs to the family:									
	A) C)	Apocynaceae Cruciferae	2		B) D)	Olead	anginaceae ceae			
97.	Chro A) C)	· · · · · · · · · · · · · · · · · · ·						nosome:		
98.	1. M 2. M 3. M	ose the correct st utations are help utants enable on utations cannot l vitro biochemic	oful to e e to lea oe indu	elucidate urn about ced for l	t metabo	olic reg nical bl	gulation ocks	unctions (using mutations	
	A)	1 & 2 only	B)	1, 2 &	3 only	C)	1, 3 & 4 or	nly D)	1, 2 & 4 only	

99.	Choose the correct statement A) Nucleoplasm is Feulgen positive									
	B) Nucleoplasm in bacterial cell is located in the side of cell									
	C)	Slimy capsule								
	D)	• •				_	nuclear memb	rane		
100.	Man made colourless, odourless, easily liquefiable chemical with great potential for global warming:									
	A)	Methane			B)	Nitrou	ıs oxide			
	C)	Chlorofluoro	carbons		D)	CO_2				
101.	Choose the correct statements 1. Golgi complex is involved in storage of synthetic proteins 2. B oxidation of fatty acids occur in mitochondria 3. Lysosomes act as tore house of hydrolysing enzymes 4. Vacuoles act as osmoregulatory structures in the cell									
	A)	2 & 3 only	B)	2, 3 &	4 only	C)	1, 3 & 4 only	D)	1, 2, 3 & 4	
102.	General A) B) C) D)	al morphology Centromere Karyotype Super numera Euchromatin	ıry chron			es at so	matic metapha	se of an	individual	
103.	Continuous process by which living organisms have come to their present forms and functions:									
	A)	Organic evolu	ıtion		B)	Inorga	nic evolution			
	C)	Progressive e			D)	_	gressive evolut	ion		
104.		oding sequence otides in the mi		m is or	ganized	•	comoter region	with a s	et of seven	
	A)	Antisense reg	ion		B)	ORI				
	C)	Initiator site			D)	Pribno	ow box			
105.	A chemical mutagen used for breeding:									
	A) C)	EMS Methylene blu	110		B) D)	UV Cobal	t			
	,	•								
106.	Integral membrane proteins that form water selective channels across the membrane:									
	,					B) Ion channel				
	C) Plasmodesmata D) Hydraulic pore									
107.		min which is g		omotin	g, anti	infectiv	e, soluble in fa	its and if	present in	
	A)	Vitamin A	B)	Vitam	in B	C)	Vitamin C	D)	Vitamin K	

108.	II ter	minai bud of a plant is remov			ne plant?							
	A)	Plant will stops growing	B)	Plant will die								
	C)	Shoot will die	D)	lateral buds will g	grow and c	ause profuse						
			,	branching	,	1						
109.	Impo	ortance of pentose phosphate										
	A)	Alternate route for carbohydrate production, produce ribose sugars										
	B)	Produce ribose sugars, alte	ernate rou	te for carbohydrate	degradation	on, Provides						
		erythorose 4 phosphate, ar										
	C)	Enhanced Co ₂ fixation and			1							
	D)	Alternate route to carbohy		*	e of oxyge	en						
	,	•			, ,							
110.	A gra	A grazing food chain:										
	A)	Autotroph \rightarrow herbivore \rightarrow primary carnivore \rightarrow secondary carnivore										
	B)	Autotroph \rightarrow herbivore \rightarrow	decomp	osers								
	C)	Herbivore → primary car			re							
	D)	Autotroph \rightarrow carnivore –										
	,	•	•									
111.	Kaziı	anga wild life sanctuary is m	nainly for									
	A)	Sloth bear B) Elep	phant	C) Wild boar	D)	Rhinoceros						
112.	Percentage of net production efficiency of an ecosystem:											
112.												
	A)	Gross primary productivity	100									
	11)	Incidet total solar radiation	. 100									
	B)	Net primary productivity	100									
	D)	Gross primary productivity										
	C)	C) Food energy assimilated x 100										
	Ο)											
	D)	Gross primary productivity x 100										
	D)	Net primary productivity	100									
113.	Basis	of speciation:										
	A)	Mutation	B)	Genetic variation								
	C)	Species diversity	D)	Environmental str	·ess							
	C)	species diversity	D)	Environmental su	.033							
114.	A biome with tree less plain, with long winters and little daylight											
	A)	Savannah B) Tun		C) Taiga	D)	Chapparal						
)	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		-)	- /							
115.	A free floating plant on the surface of water:											
	A)	Ceratophyllum	B)	Typha								
	C)	Nymphaea	D)	Wolffia								
	ŕ		ŕ									
116.		sewage converted to biologic	cally inac	ive and aestheticall	y inoffens	sive state,						
	_	e is formed after:		~ .								
	A)	Primary treatment	B)	Secondary treatm	ent							
	C)	Tertiary treatment	D)	Chlorination								

117.	A method for production of virus free plant					s from infected plants				
	A) Anther culture			B)	Pollen culture					
	C)	C) Meristem culture		D)	Oovule culture					
118.	Biode	Biodegradable natural polymer:								
	A)	Polyurethane	B)	Polystyrene	C)	Polyethyler	ne D)	Polylactide		
119.	Golde	Golden rice is a genetically modified rice variety for biosynthesis of								
	A)	Vitamin A	B)	Vitamin B	C)	Biotin	D)	Beta karotene		
120.	A bibliographic database:									
	A)	MEDLINE	B)	ExPASY	C)	SRS	D)	TrEMBL		
